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Abstract. The propagation of sound waves in layered conductors with quasi-two-dimensional
electron energy spectra is studied theoretically. It is shown that in a magnetidfi¢le rate

of sound attenuatio oscillates with a great amplitude as a function gHland of the angle
betweenH and the sound wavevectér, if the charge carriers are capable of drifting aldag

and the radius of curvature of their trajectories much less than the electron mean free path

[ but significantly exceeds the wavelength of sourid.1The diameter of the Fermi surface in
the direction orthogonal to the vectdtsand H can be determined to a high degree of accuracy
from the measured period of the oscillations.

Conductors of organic origin are usually thread or layered structures with a sharply
pronounced anisotropy of the electrical conductivity. In the layered tetrathiafulvalene salts
and halides of tetraselenium tetracene conductors, the conductivity across the layers is
substantially less than the conductivity along the layers. It is reasonable to suppose that the
electron energy spectrum in such conductors is quasi-two-dimensional in character, i.e. the
charge-carrier energy

e(p) =Y _ enl(pe: py) COS(a%pZ> @)
n=0

is weakly dependent on the projection of the momentum on the normal to the layers,
p. = p-n. The coefficients multiplying the cosines sharply decrease wijtlso the
maximum value on the Fermi surfaeép) = e of the functiones(py, p,), which is equal

to maxe1(px, py) = ner, is much less thang; the functions, (p,, py) with n > 2 are even
smaller. The decrease of the coefficients with the increase of the order of the harmonics is
due to the significant distance between the layers. Under such circumstances, the approx-
imation of a strong bond is applicable (the degree of overlapping of the wavefunctions of
the electrons belonging to different layers is small). On the other hand, inside the layer a
weak-bond approximation is suitable.

By distorting the trajectories of the charges, an external magnetic field significantly
affects their motion. IfH is not oriented in the plane of the layers, all of the electron
orbits in the momentum space are closed and charges gyrate along them with the frequency
Q. In a strong magnetic fieldd (Qt > 1; t is the charge-carrier relaxation time), all
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of the kinetic and thermodynamic characteristics of conductors are very sensitive to the
form of the electron energy spectrum. A series of effects exist which are typical for layered
conductors with metal-type conductivity, but non-existent for ordinary metals [1-6]. Among
these effects, arising from the quasi-two-dimensional nature of the charge-carrier energy
spectrum, is the high acoustic transparency of a conductor in the absence of charge-carrier
drift along the sound wavevectdr in the range of the magnetic field for which

1< kr <kl 2

In (2), r is the radius of curvature of the electron trajectorids the electron mean free path,
1/k is the wavelength of sound. Under the conditions of strong anisotropy in the energy—
momentum relation for charge carriers, closed electron orbits are almost indistinguishable,
allowing the participation of almost all of the conduction electrons on the Fermi surface
in the formation of Pippard oscillations [7]. As a result, the amplitude of the periodic
variations of the rate of sound attenuati@h, increases sharply as compared to the case for
a quasi-isotropic metal. Between the sharp maxima in the depender@eonfl/H, the
regions of anomalous acoustic transparency are located. It will be shown below that under
conditions for which inequalities (2) are satisfied and the charge-carrier drift &oisg
small (that is, the charge-carrier displacement inkkdirection during the period of motion
in a magnetic field = 27/ is less than k), the rate of sound attenuation oscillates as
a function of ¥ H with a great amplitude.

The rate of sound attenuation can be obtained by means of the solution of the elasticity
theory equation for the ionic displacemaint

8l'tlm
8)Cj

Here p and A;;;,, are the density and elastic tensor of the crystal, while= du;/9x,, is
the deformation tensor. The wave is taken to be monochromatic with the frequersty
the differentiation with respect to the time variable is equivalent to multiplicatio-i).
Equation (3) contains the counterforEeapplied to the lattice by the electron system excited
by the acoustic wave.

In order to determine the electric fiell# generated by the sound, equation (3) should
be supplemented by the Maxwell equations

—@?pui = Aijim + F;. 3

AE +iwpgj =0 4)

and by the electroneutrality condition, which is equivalent to the continuity condition, for
the current, i.e.

divj = 0. (5)

We have neglected the displacement current. Due to the high density of charge carriers in
conductors, a quasi-equilibrium state in the concomitant coordinate system, which moves
together with the crystal lattice with the velocityiou, becomes established in a very short
time. That s, during a time of the order bfsr, the distribution function for electrons takes

the form fo(e + iwp - uw). The slow relaxation of electrons in the concomitant coordinate
system should be described by means of the non-equilibrium correetjoff,/de of the

Fermi distribution functionf. The functiony satisfies the kinetic equation

W ay (1
-« — _ — —1 =
Y 8T+8t+(t w>w §
g = —lwA;j(p)u;j + eE - v.

(6)
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Here,e andwv are the electron charge and velocity. The timgetermines the position of
a charge on its trajectory in a magnetic field according to the equation of motion

— = H. 7
” ev X ©)

Equation (6) is linearized by the weak perturbation of the electron subsystem, and the
collision operator is represented by the approximation of the relaxationztiriéae electric
field E has the form

2

E:E—iw,u,ouxH%—@u. (8)
e
Here, m is the electron mass. The first two terms in (8) are the relativistic Lorentz
transformation of the field2, and the third term is connected with non-inertiality of the
concomitant coordinate system. The components of the deformation potential zgrigor

account for the charge-carrier energy renormalization under strain [8]:
de = Aij(puij
(Aik(p)) (9)
Ai(p) = rik(P) — — -
(1)
By means of the solution of the kinetic equation, the current density and the force
can be represented as follows:

L 2 ) afO 3 )
ﬂ—'@ﬁﬁ/WWEEdP=@MW (10)
. 0
F = po(j x H)i + Ziwji + — (Auih). (11)
e Xy

The force FF was calculated by Silin for isotropic conductors [9] and generalized by
Kontorovich to the case of an arbitrary dispersion law of charge carriers [10].

Let us consider an acoustic wave propagating in the plane of the layers alongiie
of a conductor, placed in a magnetic fieldl = (H sing, 0, H cosh).

Making use of the Fourier method, instead of equations (3)—(5) we obtain the set of linear
algebraic equations for the Fourier componemnts) and E(k) of the ionic displacement
and the electric field:

wpoju (k) = K°[Ey —iopo(u(k) x H)y] — a=y,z
Jx(k) =0 (12)
— & pui(k) = =iz k?uy (k) + (imaw/e) j; (k) + po( G (k) x H); +ik(A; (k).

The solution of the kinetic equation in the Fourier representation

t—T 1 e Z Il(

allows us to write the quantities that characterize the system response to the sound wave in

the form
Jilk) = 035 (k) Ej (k) + aij (k) ko (k) a4
(Aix¥ (k) = bi; () Ej (k) + ¢ (koo (k)

where

v=1/t —iw g(t) = wAji(Hkjuj(k) + ev(t) - E’(k) x(t) = / v, (1) dry.
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Here,v is the velocity of the charge-carrier drift along theaxis. The Fourier transforms
of the electrical conductivity;; (k) and acoustoelectronic tensarg(k), b;;(k), c;;(k) are
given by following expressions:
0;; (k) = (e?v; Rv;) ajj(k) = (eviRAjy)
bij(k) = {eAix Rvj) cij(k) = (AixRAjy).
The condition for the existence of a non-trivial solution of the set of equations (12)
(equating the system determinant to zero) represents the dispersion equation for the problem.
The imaginary part of the roots of the dispersion equation determines the attenuation of the
acoustic and electromagnetic waves, and the real part describes the renormalization of their
velocities related to the interaction between the waves and the conduction electrons. By
virtue of the considerable mass difference of ions and electrons, the roelated to the
sound wave, and the roét, related to the electromagnetic wave, differ significantly.
Consider the acoustic wave polarized along its wavevector direction. Using (8) and (14),
it is easily seen that fabt « 1 the rootk of the dispersion equation can be represented as
follows:

(15)

w
k=—+k (16)
S
where the small correctioky takes the form
k> 1 S . ... = \Hupo . Hpj
1= Tmm (5 (@yxbry = CaxGyy) + Exx — i(dyx — Dyy) X + oy ]Z(z > s
17)
With s = (Axaxe/p)Y?; @lS0,€ = iwpoc?/ (k?c? — w?) and
Oy = O, _ O dyi = a - DujOux
af af O aj aj Oon
~ bixo bie:
bip = big — ——= Gij = cij — —=
Oxx Oxx
fore, 8 =1y,z.

The electron displacement alogduring the period of motioT = 2r/w is

X an [T anp,
v, T = —tany — dr ¢,(t, sin—=
v Zl - /0 en(t, pr) Sin—

X an [T anpy 1
= —tany — dr &,(¢, siny = — —anp,(t, tan® 18
; = /O enlt, pi) {hcosﬁ —anp.(t, py) } (18)
wherepy = p, siné + p, cosd is an integral of the motion.
Under the main approximation in a small parameter for the quasi-two-dimensionality
the velocity of the drift takes the form

_ > an ianpy
= —tand | — — ¢t I,(tan® 19
v an m; - eXp{hcosﬂ} (tan®) (19)
where
1 (7 i
I,(tan®) = 7/ dr &,(t) exp —ﬁanpx(t) tand ; . (20)
0

In the case wherér > 1, the charge carriers that travel in phase with the wave
interact most efficiently with the acoustic wave. They give the main contribution to the
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acoustoelectronic coefficients, which can be easily calculated by means of the stationary-
phase method. For example, in the case of a layered conductor whose electron spectrum
has the form

2 2 b
py +p5 h ap; 2ep
= - —vgcoy — =, — 21
e(p) o TV S( 7 vo . (21)
the asymptotic expression for, at smalln is given by
4Ne (1l—sinkD (wy)? 1 . _ 1

by = 1+ =sinkD sinkD{1— ———

o = TmvkD { 1+az T3 (F132° +7ys 1+ a?)i2
(22)

wherea = kintandJo(B), B = (a/h)mugtand, D = 2vg/R2, N is the electron number
density, Jo is the Bessel function.

The rest of the acoustoelectronic coefficients behave in an analogous manner; i.e., they
are oscillatory functions of both the inverse magnetic field magnitude and the @angle

At ¢y « 1, one can easily obtain the following expression Kgr

ioNmvQr  2my sifkD[1 — (14 «®) Y3 + (wy)? 4+ in(1 + sinkD)
4rps?  1—sinkD +[(ry)?/2J(1+ a2+ my[L+ad)V2 - 1] +in

whereu = 27 %vow?/s3w3pno2t, wo is the plasma frequency, = 1/ Qr.

Equation (23) is valid forQr = (eHtugcosd/m) > 1, i.e. when co8 differs sig-
nificantly from zero. For the values of tdmat whicha becomes equal to zero, there is no
drift of the charge carriers alonk.

At o < 1,

by — ioNmvQt tya?sirt kD + (1y)? + iuw(1+ sinkD)
YT T anps? 1—sinkD + (wy)2/2+ mwya?/2+iu

WhenyY? « a « 1, the oscillating terms significantly exceed the smoothly varying
terms not only in the denominator but also in the numerator of expression (24). This
yields giant oscillations of the sound attenuation r&te= Imk as a function of both the
magnetic field magnitude and the anglbetweenH andn. In the case where the charge-
carrier displacement in the-direction during the relaxation time is much greater than the
wavelength of sound, these oscillations take place as well. The quaniiythen

ioNmvQt 2y SifkD + (wy)? + iuw(1+ sinkD)
1= Ar ps? 1—sinkD+rmya+iu
Thus even a small drift of charge carriers alohgaffects the sound attenuatiai sig-
nificantly. At sinkD = 1, the functionG(H) attains its maximum value:
ZG()Q‘[
(14?2’
A slight deviation of sirkD from unity leads to a sharp decrease @f which reaches
its minimum G,,;, = Go/Qt at sinkD = —1, if > < y < 1. Aty < (3%/2) « 1
the minimum of G(H) is displaced to the values @i at which sirkD is close to zero,
and for sinkD = —1 the functionG(H) has a local maximunG = Gge?. This maximum
increases with increasingand ate > 1 attains the valu&,—the rate of sound attenuation
in the absence of a magnetic field. At the same time, the main maximum decreases with
increasingx and draws closer to the local maximum. Whenidin= —1, the rate of sound
attenuation oscillates with a great amplitude, exceeding the smoothly varying p@rtrof
times of magnituder.

ky =

(23)

a <1l (24)

1
l«axk ; (25)

(26)

Gmax =
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coefficient G/Gop on the magnetic fielh = Ho/H at
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Figure 2. The dependence of the acoustic absorption

1 W v
AW
coefficientG/Go on the magnetic field = Ho/H at

0 h k=107, n=8x102 x =8x 1072, () G/Go =
10 15 20 25 30 [0,50], (b) G/Go = [0, 1].

The numerical calculations based on formulae (24) and (25) confirm such analysis. The
results for some values of the parameters are shown in figure 1 and figure 2 for the acoustic
absorption coefficient;/ G versus the magnetic field = Hy/H, with Hy = 2wvgm/es i,
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and on figure 3 and figure 4 for the acoustic absorption coefficigttiy versus the tangent
of the anglex = tan® between the magnetic fielH and the sound wavevecté:
The oscillating character of the dependence (a), as well as the existence of local maxima
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(b) and their locations, are evident.

It is easy to see that the same dependencé& a@n 1/H and tar® remains valid for
an arbitrary form of the quasi-two-dimensional electron energy spectrum. If there are only
two points of the stationary phase on the electron orbit, the quabtity D,, /e H j1o COSY
is determined by the diametdd, of the Fermi surface in the direction orthogonal to the
vectorsk and H.

In much the same way, giant oscillations of the velocity of sound transform in the
presence of charge-carrier drift along the wavevector direction.

The observation of the marked influence of the drift on the oscillatory dependerige of
on 1/H at ultrasonic frequencie@ = 10° s1) is conditioned by compliance with certain
requirements. In particular, perfect specimens with a long free-path length of electrons and
strong magnetic fields (about 10 T) must be used. For this range of magnetic fields, the
Shubnikov—de Haas effect is clearly manifested in the tetrathiafulvalene salts, which proves
that the conditior2t > 1 is satisfied and, at the same time, the spacing between quantized
electron energy levels is much less than both the Fermi energy and also the guantity
Under these conditions, the quasi-classical description of non-equilibrium processes is valid.
For a stronger magnetic field, taking account of the quantization of the electron energy levels
becomes essential, but the effects considered above can be observed as well.
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