
Giant oscillations of the rate of sound attenuation in layered conductors placed in a magnetic

field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 11765

(http://iopscience.iop.org/0953-8984/10/50/015)

Download details:

IP Address: 171.66.16.210

The article was downloaded on 14/05/2010 at 18:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/50
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter10 (1998) 11765–11772. Printed in the UK PII: S0953-8984(98)92321-9

Giant oscillations of the rate of sound attenuation in
layered conductors placed in a magnetic field

G Ivanovski†, O V Kirichenko‡, D Krstovska† and V G Peschansky‡
† Faculty of Natural Sciences and Mathematics, Department of Physics, 91000 Skopje, Republic
of Macedonia
‡ B I Verkin Institute for Low Temperature Physics and Engineering, National Academy of
Sciences of Ukraine, 310164 Kharkov, Ukraine

Received 9 March 1998, in final form 30 September 1998

Abstract. The propagation of sound waves in layered conductors with quasi-two-dimensional
electron energy spectra is studied theoretically. It is shown that in a magnetic fieldH the rate
of sound attenuationG oscillates with a great amplitude as a function of 1/H and of the angle
betweenH and the sound wavevectork, if the charge carriers are capable of drifting alongk,
and the radius of curvature of their trajectoriesr is much less than the electron mean free path
l but significantly exceeds the wavelength of sound 1/k. The diameter of the Fermi surface in
the direction orthogonal to the vectorsk andH can be determined to a high degree of accuracy
from the measured period of the oscillations.

Conductors of organic origin are usually thread or layered structures with a sharply
pronounced anisotropy of the electrical conductivity. In the layered tetrathiafulvalene salts
and halides of tetraselenium tetracene conductors, the conductivity across the layers is
substantially less than the conductivity along the layers. It is reasonable to suppose that the
electron energy spectrum in such conductors is quasi-two-dimensional in character, i.e. the
charge-carrier energy

ε(p) =
∞∑
n=0

εn(px, py) cos

(
anpz

h̄

)
(1)

is weakly dependent on the projection of the momentum on the normal to the layers,
pz = p · n. The coefficients multiplying the cosines sharply decrease withn, so the
maximum value on the Fermi surfaceε(p) = εF of the functionε1(px, py), which is equal
to maxε1(px, py) = ηεF , is much less thanεF ; the functionsεn(px, py) with n > 2 are even
smaller. The decrease of the coefficients with the increase of the order of the harmonics is
due to the significant distance between the layers. Under such circumstances, the approx-
imation of a strong bond is applicable (the degree of overlapping of the wavefunctions of
the electrons belonging to different layers is small). On the other hand, inside the layer a
weak-bond approximation is suitable.

By distorting the trajectories of the charges, an external magnetic field significantly
affects their motion. IfH is not oriented in the plane of the layers, all of the electron
orbits in the momentum space are closed and charges gyrate along them with the frequency
�. In a strong magnetic fieldH (�τ � 1; τ is the charge-carrier relaxation time), all
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of the kinetic and thermodynamic characteristics of conductors are very sensitive to the
form of the electron energy spectrum. A series of effects exist which are typical for layered
conductors with metal-type conductivity, but non-existent for ordinary metals [1–6]. Among
these effects, arising from the quasi-two-dimensional nature of the charge-carrier energy
spectrum, is the high acoustic transparency of a conductor in the absence of charge-carrier
drift along the sound wavevectork in the range of the magnetic field for which

1� kr � kl. (2)

In (2), r is the radius of curvature of the electron trajectories,l is the electron mean free path,
1/k is the wavelength of sound. Under the conditions of strong anisotropy in the energy–
momentum relation for charge carriers, closed electron orbits are almost indistinguishable,
allowing the participation of almost all of the conduction electrons on the Fermi surface
in the formation of Pippard oscillations [7]. As a result, the amplitude of the periodic
variations of the rate of sound attenuation,G, increases sharply as compared to the case for
a quasi-isotropic metal. Between the sharp maxima in the dependence ofG on 1/H , the
regions of anomalous acoustic transparency are located. It will be shown below that under
conditions for which inequalities (2) are satisfied and the charge-carrier drift alongk is
small (that is, the charge-carrier displacement in thek-direction during the period of motion
in a magnetic fieldT = 2π/� is less than 1/k), the rate of sound attenuation oscillates as
a function of 1/H with a great amplitude.

The rate of sound attenuation can be obtained by means of the solution of the elasticity
theory equation for the ionic displacementu:

−ω2ρui = λijlm ∂ulm
∂xj
+ Fi. (3)

Hereρ andλijlm are the density and elastic tensor of the crystal, whileulm = ∂ul/∂xm is
the deformation tensor. The wave is taken to be monochromatic with the frequencyω, so
the differentiation with respect to the time variable is equivalent to multiplication by(−iω).
Equation (3) contains the counterforceF applied to the lattice by the electron system excited
by the acoustic wave.

In order to determine the electric fieldE generated by the sound, equation (3) should
be supplemented by the Maxwell equations

1E + iωµ0j = 0 (4)

and by the electroneutrality condition, which is equivalent to the continuity condition, for
the current, i.e.

div j = 0. (5)

We have neglected the displacement current. Due to the high density of charge carriers in
conductors, a quasi-equilibrium state in the concomitant coordinate system, which moves
together with the crystal lattice with the velocity−iωu, becomes established in a very short
time. That is, during a time of the order ofh/εF , the distribution function for electrons takes
the formf0(ε + iωp · u). The slow relaxation of electrons in the concomitant coordinate
system should be described by means of the non-equilibrium correction−ψ ∂f0/∂ε of the
Fermi distribution functionf . The functionψ satisfies the kinetic equation

v · ∂ψ
∂r
+ ∂ψ
∂t
+
(

1

τ
− iω

)
ψ = g

g = −iω3ij (p)uij + eẼ · v.
(6)
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Here,e andv are the electron charge and velocity. The timet determines the position of
a charge on its trajectory in a magnetic field according to the equation of motion

∂p

∂t
= ev ×H . (7)

Equation (6) is linearized by the weak perturbation of the electron subsystem, and the
collision operator is represented by the approximation of the relaxation timeτ . The electric
field Ẽ has the form

Ẽ = E − iωµ0u×H + mω
2

e
u. (8)

Here, m is the electron mass. The first two terms in (8) are the relativistic Lorentz
transformation of the fieldE, and the third term is connected with non-inertiality of the
concomitant coordinate system. The components of the deformation potential tensorλij (p)
account for the charge-carrier energy renormalization under strain [8]:

δε = λij (p)uij
3ik(p) = λik(p)− 〈λik(p)〉〈1〉 .

(9)

By means of the solution of the kinetic equation, the current density and the forceF
can be represented as follows:

ji = − 2

(2πh̄)3

∫
eviψ

∂f0

∂ε
d3p ≡ 〈eviψ〉 (10)

Fi = µ0( j ×H)i + m
e

iωji + ∂

∂xk
〈3ikψ〉. (11)

The forceF was calculated by Silin for isotropic conductors [9] and generalized by
Kontorovich to the case of an arbitrary dispersion law of charge carriers [10].

Let us consider an acoustic wave propagating in the plane of the layers along thex-axis
of a conductor, placed in a magnetic fieldH = (H sinθ, 0, H cosθ).

Making use of the Fourier method, instead of equations (3)–(5) we obtain the set of linear
algebraic equations for the Fourier componentsu(k) and Ẽ(k) of the ionic displacement
and the electric field:

iωµ0jα(k) = k2[Ẽα − iωµ0(u(k)×H)α] α = y, z
jx(k) = 0

− ω2ρui(k) = −λixlxk2ul(k)+ (imω/e)ji(k)+ µ0( j(k)×H)i + ik〈3ixψ(k)〉.
(12)

The solution of the kinetic equation in the Fourier representation

ψ =
(∫ t

t−T
dt ′ g(t ′) exp{ik[x(t ′)− x(t)] + ν(t ′ − t)}

)/
(1− exp[−νT − ikvxT ]) ≡ R̂g

(13)

allows us to write the quantities that characterize the system response to the sound wave in
the form

ji(k) = σij (k)Ẽj (k)+ aij (k)kωuj (k)
〈3ixψ(k)〉 = bij (k)Ẽj (k)+ cij (k)kωuj (k)

(14)

where

ν = 1/τ − iω g(t) = ω3ji(t)kiuj (k)+ ev(t) · Ẽ(k) x(t) =
∫ t

vx(t1) dt1.
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Here, v̄ is the velocity of the charge-carrier drift along thex-axis. The Fourier transforms
of the electrical conductivityσij (k) and acoustoelectronic tensorsaij (k), bij (k), cij (k) are
given by following expressions:

σij (k) = 〈e2viR̂vj 〉 aij (k) = 〈eviR̂3jx〉
bij (k) = 〈e3ixR̂vj 〉 cij (k) = 〈3ixR̂3jx〉.

(15)

The condition for the existence of a non-trivial solution of the set of equations (12)
(equating the system determinant to zero) represents the dispersion equation for the problem.
The imaginary part of the roots of the dispersion equation determines the attenuation of the
acoustic and electromagnetic waves, and the real part describes the renormalization of their
velocities related to the interaction between the waves and the conduction electrons. By
virtue of the considerable mass difference of ions and electrons, the rootk, related to the
sound wave, and the rootke, related to the electromagnetic wave, differ significantly.

Consider the acoustic wave polarized along its wavevector direction. Using (8) and (14),
it is easily seen that forωτ � 1 the rootk of the dispersion equation can be represented as
follows:

k = ω

s
+ k1 (16)

where the small correctionk1 takes the form

k1 = ik2

2ρs

1

(1− ξ σ̃yy)
(
ξ
(
ãyx b̃xy − c̃xx σ̃yy

)+ c̃xx − i
(
ãyx − b̃xy

)Hzµ0

k
+ σ̃yy

H 2
z µ

2
0

k2

)∣∣∣∣
k=ω/s

(17)

with s = (λxxxx/ρ)1/2; also,ξ = iωµ0c
2/(k2c2− ω2) and

σ̃αβ = σαβ − σαxσxβ
σxx

ãαj = aαj − axjσαx
σxx

b̃iβ = biβ − bixσxβ
σxx

c̃ij = cij − bixaxj
σxx

for α, β = y, z.
The electron displacement alongk during the period of motionT = 2π/ω is

vxT = − tanϑ
∞∑
n=1

an

h̄

∫ T

0
dt εn(t, pH ) sin

anpz

h̄

= − tanϑ
∞∑
n=1

an

h̄

∫ T

0
dt εn(t, pH ) sin

{
anpH

h̄ cosϑ
− 1

h̄
anpx(t, pH ) tanϑ

}
(18)

wherepH = px sinθ + pz cosθ is an integral of the motion.
Under the main approximation in a small parameter for the quasi-two-dimensionalityη,

the velocity of the drift takes the form

vx = − tanϑ Im
∞∑
n=1

an

h̄
exp

{
ianpH
h̄ cosϑ

}
In(tanϑ) (19)

where

In(tanϑ) = 1

T

∫ T

0
dt εn(t) exp

{
− i

h̄
anpx(t) tanϑ

}
. (20)

In the case wherekr � 1, the charge carriers that travel in phase with the wave
interact most efficiently with the acoustic wave. They give the main contribution to the
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acoustoelectronic coefficients, which can be easily calculated by means of the stationary-
phase method. For example, in the case of a layered conductor whose electron spectrum
has the form

ε(p) = p2
x + p2

y

2m
+ ηh̄

a
v0 cos

(
apz

h̄

)
v0 =

√
2εF
m

(21)

the asymptotic expression forσyy at smallη is given by

σyy = 4Ne

πmνkD

{
1− sinkD

(1+ α2)1/2
+ (πγ )

2

3

(
1+ 1

2
sinkD

)
+ πγ sinkD

(
1− 1

(1+ α2)1/2

)}
(22)

whereα = klη tanθJ0(β), β = (a/h̄)mv0 tanθ , D = 2v0/�, N is the electron number
density,J0 is the Bessel function.

The rest of the acoustoelectronic coefficients behave in an analogous manner; i.e., they
are oscillatory functions of both the inverse magnetic field magnitude and the angleθ .

At αγ � 1, one can easily obtain the following expression fork1:

k1 = iωNmv�τ

4πρs2

2πγ sin2 kD[1− (1+ α2)−1/2] + (πγ )2+ iµ(1+ sinkD)

1− sinkD + [(πγ )2/2](1+ α2)1/2+ πγ [(1+ α2)1/2− 1
]+ iµ

(23)

whereµ = 2π2v0ω
2/s3ω2

0µ0�τ , ω0 is the plasma frequency,γ = 1/�τ .
Equation (23) is valid for�τ ∼= (eHτµ0 cosθ/m) � 1, i.e. when cosθ differs sig-

nificantly from zero. For the values of tanθ at whichα becomes equal to zero, there is no
drift of the charge carriers alongk.

At α � 1,

k1 = iωNmv�τ

4πρs2

πγα2 sin2 kD + (πγ )2+ iµ(1+ sinkD)

1− sinkD + (πγ )2/2+ πγα2/2+ iµ
α � 1. (24)

When γ 1/2 � α � 1, the oscillating terms significantly exceed the smoothly varying
terms not only in the denominator but also in the numerator of expression (24). This
yields giant oscillations of the sound attenuation rateG = Im k as a function of both the
magnetic field magnitude and the angleθ betweenH andn. In the case where the charge-
carrier displacement in thek-direction during the relaxation time is much greater than the
wavelength of sound, these oscillations take place as well. The quantityk1 is then

k1 = iωNmv�τ

4πρs2

2πγ sin2 kD + (πγ )2+ iµ(1+ sinkD)

1− sinkD + πγα + iµ
1� α � 1

γ
. (25)

Thus even a small drift of charge carriers alongk affects the sound attenuationG sig-
nificantly. At sinkD = 1, the functionG(H) attains its maximum value:

Gmax= 2G0�τ

(1+ α2)1/2
. (26)

A slight deviation of sinkD from unity leads to a sharp decrease ofG, which reaches
its minimumGmin = G0/�τ at sinkD = −1, if α2 � γ � 1. At γ 6 (3α2/2) � 1
the minimum ofG(H) is displaced to the values ofH at which sinkD is close to zero,
and for sinkD = −1 the functionG(H) has a local maximumG = G0α

2. This maximum
increases with increasingα and atα > 1 attains the valueG0—the rate of sound attenuation
in the absence of a magnetic field. At the same time, the main maximum decreases with
increasingα and draws closer to the local maximum. When sinkD = −1, the rate of sound
attenuation oscillates with a great amplitude, exceeding the smoothly varying part ofG in
times of magnitude�τ .
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Figure 1. The dependence of the acoustic absorption
coefficientG/G0 on the magnetic fieldh = H0/H at
kl = 103, η = 10−2, x ≡ tan(ϑ) = 1.5 × 10−2;
(a)G/G0 = [0, 500], (b)G/G0 = [0, 0.25].

Figure 2. The dependence of the acoustic absorption
coefficientG/G0 on the magnetic fieldh = H0/H at
kl = 102, η = 8× 10−2, x = 8× 10−2; (a) G/G0 =
[0, 50], (b)G/G0 = [0, 1].

The numerical calculations based on formulae (24) and (25) confirm such analysis. The
results for some values of the parameters are shown in figure 1 and figure 2 for the acoustic
absorption coefficientG/G0 versus the magnetic fieldh = H0/H , with H0 = 2ωv0m/esµ0,
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Figure 3. The dependence of the acoustic absorption
coefficientG/G0 on the tangent of the anglex between
the magnetic fieldH and the sound wavevectork at
h = 1, kl = 102, η = 10−2; (a) G/G0 = [0, 30],
(b) G/G0 = [0, 2].

Figure 4. The dependence of the acoustic absorption
coefficientG/G0 on the tangent of the anglex between
the magnetic fieldH and the sound wavevectork at
h = 10−1, kl = 102, η = 10−1; (a) G/G0 = [0, 60],
(b) G/G0 = [0, 20].

and on figure 3 and figure 4 for the acoustic absorption coefficientG/G0 versus the tangent
of the anglex = tanϑ between the magnetic fieldH and the sound wavevectork.

The oscillating character of the dependence (a), as well as the existence of local maxima



11772 G Ivanovski et al

(b) and their locations, are evident.
It is easy to see that the same dependence ofG on 1/H and tanθ remains valid for

an arbitrary form of the quasi-two-dimensional electron energy spectrum. If there are only
two points of the stationary phase on the electron orbit, the quantityD = Dp/eHµ0 cosϑ
is determined by the diameterDp of the Fermi surface in the direction orthogonal to the
vectorsk andH.

In much the same way, giant oscillations of the velocity of sound transform in the
presence of charge-carrier drift along the wavevector direction.

The observation of the marked influence of the drift on the oscillatory dependence ofG

on 1/H at ultrasonic frequencies(ω ∼= 108 s−1) is conditioned by compliance with certain
requirements. In particular, perfect specimens with a long free-path length of electrons and
strong magnetic fields (about 10 T) must be used. For this range of magnetic fields, the
Shubnikov–de Haas effect is clearly manifested in the tetrathiafulvalene salts, which proves
that the condition�τ � 1 is satisfied and, at the same time, the spacing between quantized
electron energy levels is much less than both the Fermi energy and also the quantityηεF .
Under these conditions, the quasi-classical description of non-equilibrium processes is valid.
For a stronger magnetic field, taking account of the quantization of the electron energy levels
becomes essential, but the effects considered above can be observed as well.
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